Python и машинное обучение. Машинное и глубокое обучение с использованием Python, scikit-learn
Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения. Книга наполнена четкими пояснениями, визуальными представлениями, работающими примерами и детально раскрывает все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения. Третье издание книги обновлено с целью учета версии библиотеки TensorFlow 2 и последних добавлений в scikit-learn. Оно расширено для охвата двух самых современных методик машинного обучения: обучения с подкреплением и порождающих состязательных сетей. Эта книга — ваш попутчик в машинном обучении с применением Python, будь вы разработчиком приложений на языке Python, не знакомым с машинным обучением, или разработчиком, желающим углубить свои знания в современных областях. Основные темы книги Фреймворки, модели и методики, которые позволяют машинам "учиться" на основе данных Использование scikit-learn для машинного обучения и TensorFlow для глубокого обучения Применение машинного обучения для классификации изображений, смыслового анализа, создания интеллектуальных веб-приложений и многого другого Построение и обучение нейронных сетей, порождающих состязательных сетей и других моделей Реализация веб-приложений с искусственным интеллектом Выполнение очистки и подготовки данных для машинного обучения Классификация изображений с использованием глубоких сверточных нейронных сетей Рекомендуемые приемы для оценки и настройки моделей Прогнозирование непрерывных целевых результатов с использованием регрессионного анализа Обнаружение скрытых шаблонов и структуры в данных с помощью кластеризации Углубление в текстовые данные и данные социальных сетей с применением смыслового анализа Прикладное машинное обучение с прочным теоретическим фундаментом. Новое издание пересмотрено и расширено с целью охвата TensorFlow 2, порождающих состязательных сетей (GAN) и обучения с подкреплением. Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения. Книга наполнена четкими пояснениями, визуальными представлениями и работающими примерами, детально раскрывая все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения. Обновленное с учетом библиотеки TensorFlow 2.0 третье издание предлагает читателям ознакомиться с ее новыми средствами API-интерфейса Keras, а также с последними добавлениями в scikit-learn. Оно расширено для охвата самых современных методик обучения с подкреплением, основанных на глубоком обучении, и введения в порождающие состязательные сети. Наконец, в книге также проводится исследование подобласти обработки естественного языка (NLP), называемой смысловым анализом, что поможет вам использовать алгоритмы машинного обучения для классификации документов. Книга обсуждается в отдельном сообщении в блоге Виктора Штонда. 3-е издание.
Печатное издание имеет сертификаты качества и безопасности и соответствует нормам санитарной гигиены. На товар распростаняется гарантия. Имеется дисконтная накопительная система, а также корпоративная скидка 10% на заказ от 20 шт. На странице офомления заказа будет дана более детальная информация о стоимости доставки в ваш регион и о вашей личной скидке.
Позвольте Вам предложить
-
Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и Ten
Машинное обучение поглощает мир программного обеспечения. Освойте и работайте с передовыми технологиями машинного обучения, нейронных сетей и глубокого обучения с помощью…
-
Прикладное машинное обучение без учителя с использованием Python
По мнению многих отраслевых экспертов, обучение без учителя — передовой рубеж технологий искусственного интеллекта (ИИ) и, возможно, ключ к созданию сильного…
-
Машинное обучение с использованием Python. Сборник рецептов
Книга содержит около 200 рецептов решения практических задач машинного обучения, таких как загрузка и обработка текстовых или числовых данных, отбор модели,…
-
Python и машинное обучение
Крайне необходимое издание по новейшей предсказательной аналитике для более глубокого понимания методологии машинного обучения Использование разных машинно-обучаемых моделей для формулирования различных вопросов…
-
Крупномасштабное машинное обучение вместе с Python
Главная задача настоящей книги состоит в том, чтобы предоставить способы применения мощных методов машинного обучения с открытым исходным кодом в крупномасштабных…
-
Глубокое обучение на Python
Глубокое обучение - Deep learning - это набор алгоритмов машинного обучения, которые моделируют высокоуровневые абстракции в данных, используя архитектуры, состоящие из…
-
Построение систем машинного обучения на языке Python
Книга рассчитана на программистов, пишущих на Python и желающих узнать о построении систем машинного обучения с помощью библиотек с открытым исходным…
-
Python для сложных задач. Наука о данных и машинное обучение
Книга "Python Data Science Handbook" - это подробное руководство по самым разным вычислительным и статистическим методам, без которых немыслима любая интенсивная…
-
Глубокое обучение. Легкая разработка проектов на Python
Взрывной интерес к нейронным сетям и искусственному интеллекту затронул уже все области жизни, и понимание принципов глубокого обучения необходимо каждому разработчику…