Глубокое обучение с подкреплением на Python. OpenAI Gym и TensorFlow для профи
Глубокое обучение с подкреплением (Reinforcement Learning) - самое популярное и перспективное направление искусственного интеллекта. Практическое изучение RL на Python поможет освоить не только базовые, но и передовые алгоритмы глубокого обучения с подкреплением. Вы начнете с основных принципов обучения с подкреплением, OpenAI Gym и TensorFlow, познакомьтесь с марковскими цепями, методом Монте-Карло и динамическим программированием, так что "страшные" аббревиатуры DQN, DRQN, A3C, PPO и TRPO вскоре перестанут вас пугать. Вы узнаете об агентах, которые учатся на человеческих предпочтениях, DQfD, HER и многих других последних достижениях RL. Прочитав книгу, вы приобретете знания и опыт, необходимые для реализации обучения с подкреплением и глубокого обучения с подкреплением в реальных проектах, и войдете в мир искусственного интеллекта. В этой книге вы: - Познакомитесь с основами методов, алгоритмов и элементов RL - Обучите агента с помощью OpenAI Gym и Tensorflow - Освоите марковские процессы принятия решений, оптимальность Беллмана и обучение TD - Научитесь решать проблемы многоруких бандитов - Овладеете алгоритмами глубокого обучения, такими как RNN, LSTM и CNN - Создадите интеллектуальных агентов с помощью алгоритма DRQN, которые смогут играть в Doom - С помощью DDPG научите агентов играть в Lunar Lander - Отправите агента на автогонки, используя метод DQN
Товар имеет сертификаты качества и безопасности и соответствует нормам санитарной гигиены. Прилагается гарантийное обязательство. Предлагается дисконтная накопительная система, а также корпоративная скидка 10% на заказ от 20 шт. На странице офомления заказа будет дана более подробная информация о стоимости доставки в ваш регион и о вашей личной скидке.
Позвольте Вам предложить
-
TensorFlow для глубокого обучения
Книга знакомит с основами программной библиотеки TensorFlow и принципами глубокого обучения, начиная с нулевого уровня. В книге рассмотрены базовые вычисления в…
-
Алгоритмы обучения с подкреплением на Python
Эта книга поможет читателю овладеть алгоритмами обучения с подкреплением (ОП) и научиться реализовывать их при создании самообучающихся агентов. В первой части рассматриваются…
-
Глубокое обучение с подкреплением. AlphaGo и другие технологии
Эта книга — подробное руководство по новейшим инструментам глубокого обучения с подкреплением и их ограничениям. Мы реализуем и проверим на практике…
-
Глубокое обучение и TensorFlow для профессионалов. Математический подход к построению систем
Данная книга представляет собой углубленное практическое руководство, которое позволит читателям освоить методы глубокого обучения на уровне, достаточном для развертывания готовых решений.…
-
Глубокое обучение на Python
Глубокое обучение - Deep learning - это набор алгоритмов машинного обучения, которые моделируют высокоуровневые абстракции в данных, используя архитектуры, состоящие из…
-
Глубокое обучение. Легкая разработка проектов на Python
Взрывной интерес к нейронным сетям и искусственному интеллекту затронул уже все области жизни, и понимание принципов глубокого обучения необходимо каждому разработчику…
-
Python и машинное обучение. Машинное и глубокое обучение с использованием Python, scikit-learn
Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и…
-
Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и Ten
Машинное обучение поглощает мир программного обеспечения. Освойте и работайте с передовыми технологиями машинного обучения, нейронных сетей и глубокого обучения с помощью…
-
Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов
Затронуты расширенные темы глубокого обучения: оптимизационные алгоритмы, настройка гиперпараметров, отсев и анализ ошибок, стратегии решения типичных задач во время тренировки глубоких…