Глубокое обучение без математики. Том 1. Основы
Если вы интересуетесь машинным обучением (Machine Learning) и глубоким обучением (Deep Learning), то этот двухтомник для вас! Разработка и обучение собственных нейронных сетей Использование нейронных сетей для понимания данных и создания новых данных Присвоение описательных категорий текстам, изображениям и другим типам данных Предсказание последующих значений последовательности данных Исследование структуры ваших данных Обработка данных с максимальной эффективностью Восприятие новых знаний и идей и применение их на практике Получение удовольствия от обсуждения глубокого обучения с другими специалистами Эта книга не похожа на большинство других учебников и руководств по глубокому обучению - в ней нет ни детального алгоритмического анализа, сопровождаемого обширной математикой, ни развернутых листингов программного кода. Автор выбрал золотую середину - благодаря дружелюбному подходу, сопровождаемому огромным количеством цветных иллюстраций, а также детальному и скрупулезному описанию, он глубоко освещает основополагающие идеи и фундаментальные основы глубокого обучения и нейронных сетей. Издание предназначено для всех читателей, кто хочет использовать глубокое обучение в своей работе. Это программисты, инженеры, ученые, руководители, музыканты, врачи и все, кто хочет работать с большими объемами данных, извлекая из них полезную информацию или формируя новые данные. Продолжение книги будет посвящено практическому воплощению алгоритмов глубокого обучения.
Печатное издание имеет сертификаты качества и безопасности и соответствует нормам санитарной гигиены. Прилагается гарантийное обязательство. Имеется дисконтная накопительная система, а также корпоративная скидка 10% на заказ от 20 шт. На странице офомления заказа будет приведена более детальная информация о стоимости доставки в ваш регион и о вашей личной скидке.
Позвольте Вам предложить
-
Глубокое обучение без математики. Том 2. Практика
Если вы интересуетесь машинным обучением (Machine Learning) и глубоким обучением (Deep Learning), то этот двухтомник для вас. Эта книга не похожа на…
-
Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов
Затронуты расширенные темы глубокого обучения: оптимизационные алгоритмы, настройка гиперпараметров, отсев и анализ ошибок, стратегии решения типичных задач во время тренировки глубоких…
-
Основы глубокого обучения. Создание алгоритмов для искусственного интеллекта следующего поколения
О книге Глубокое обучение - машинное обучение, которое строится на идее обучения через примеры. Эта книга разбирает основные идеи этой сложной отрасли…
-
TensorFlow для глубокого обучения
Книга знакомит с основами программной библиотеки TensorFlow и принципами глубокого обучения, начиная с нулевого уровня. В книге рассмотрены базовые вычисления в…
-
Глубокое обучение (цветная)
Основы прикладной математики и машинного обучения Теория вероятности и теория информации Оценка максимального правдоподобия Современные подходы к глубоким сетям Регуляризация в глубоком обучении Оптимизация в обучении…
-
Глубокое обучение на Python
Глубокое обучение - Deep learning - это набор алгоритмов машинного обучения, которые моделируют высокоуровневые абстракции в данных, используя архитектуры, состоящие из…
-
Грокаем глубокое обучение
Глубокое обучение - это раздел искусственного интеллекта, цель которого научить компьютеры обучаться с помощью нейронных сетей - технологии, созданной по образу…
-
Глубокое обучение для чайников
В настоящее время глубокое обучение (Deep Learning) предоставляет средства для распознавания шаблонов в данных, которые являются движущей силой онлайнового бизнеса и…
-
Введение в глубокое обучение
Автор книги - давний исследователь искусственного интеллекта, специализирующийся на обработке естественного языка, революцию в котором сделало глубокое обучение. К сожалению, ему потребовалось…